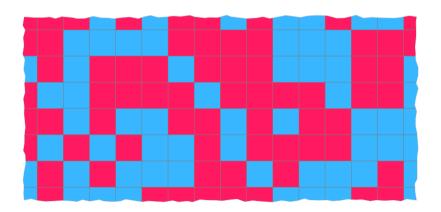
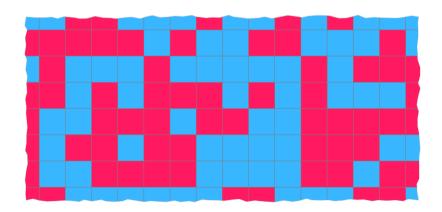


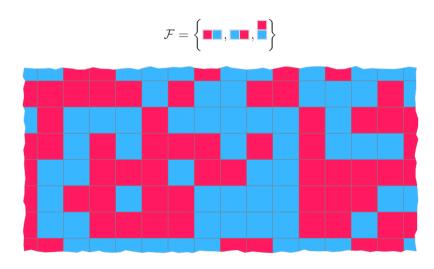
Subshifts

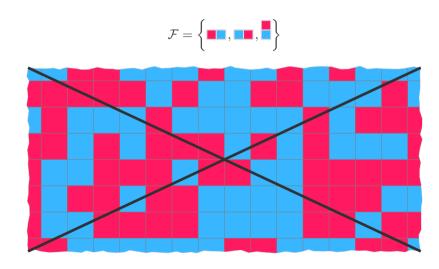
Subshifts

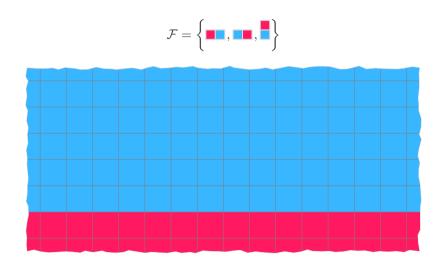

A 2D-subshift is a set of colorings
$$\mathbb{Z}^2 \mapsto \Sigma$$
 that do not contain some family of forbidden patterns \mathcal{F} . Each family of forbidden patterns defines a subshift:
$$X_{\mathcal{F}} = \left\{ x \in \Sigma^{\mathbb{Z}^2} : \forall p \in \mathcal{F}, p \text{ does not appear in } x \right\}$$
Example 2

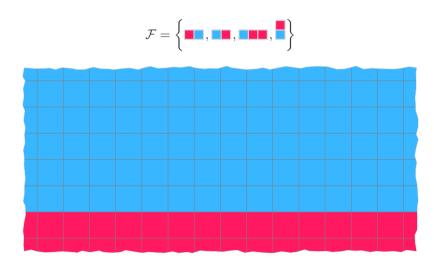
Jigsaw puzzle

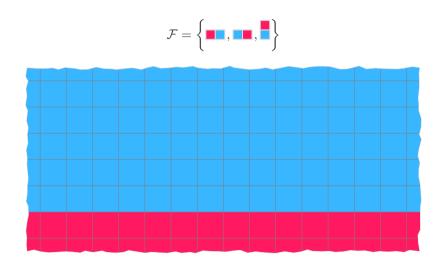

$$\Sigma = \mathcal{C}_{\Sigma}, \mathcal{C}_{\Sigma}, \text{ etc...}$$
and

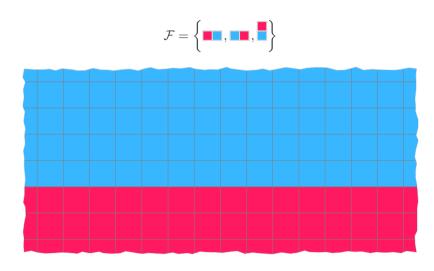

$$\mathcal{F} = \left\{ \mathcal{C}_{\Sigma}, \mathcal{C}_{\Sigma}, \text{ etc...} \right\}$$

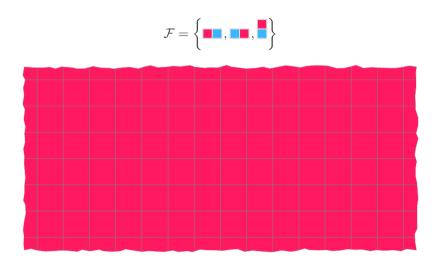


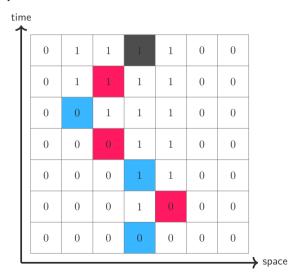












Subshifts as computation models

► Subshifts are a computation model.

Subshifts as computation models

► Subshifts are a computation model.

Subshifts as computation models

► Subshifts are a computation model.

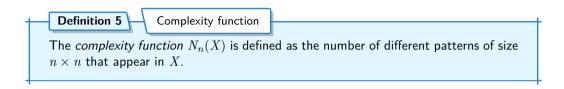
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	0	1	1	0	0
0	0	0	1	1	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0

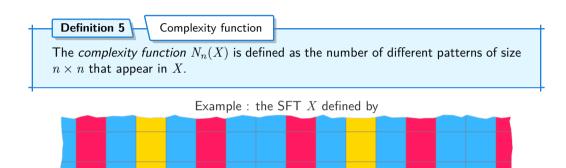
Classes of subshifts

Definition 3

Classification of shifts

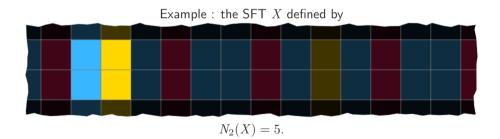
- 1. A *subshift of finite type* (or SFT) is a subshift that can be defined by a finite family of forbidden patterns.
- **2.** An *effective subshift* is a subshift that can be defined by a recursively enumerable family of forbidden patterns.


Classes of subshifts

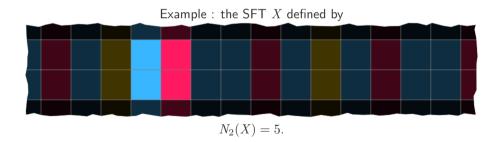

Definition 3 Classification of shifts

- 1. A subshift of finite type (or SFT) is a subshift that can be defined by a finite family of forbidden patterns.
- **2.** An *effective subshift* is a subshift that can be defined by a recursively enumerable family of forbidden patterns.

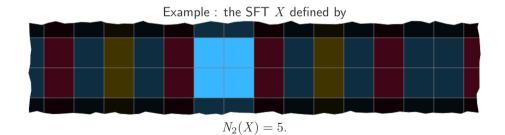
Theorem 4 [Hochman 2010, DRS 2012, AS 2013] For any effective 1D subshift X_1 , there exists a 2D SFT X_2 which simulates X_1 .



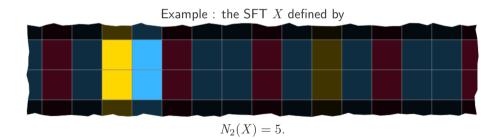
$$N_2(X) = 5.$$



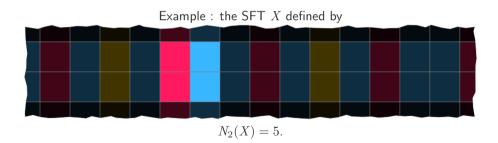
The complexity function $N_n(X)$ is defined as the number of different patterns of size $n \times n$ that appear in X.

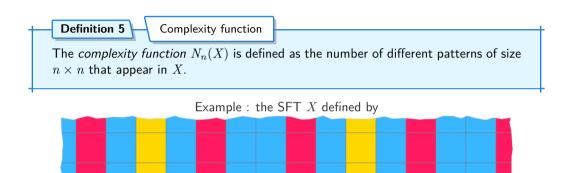


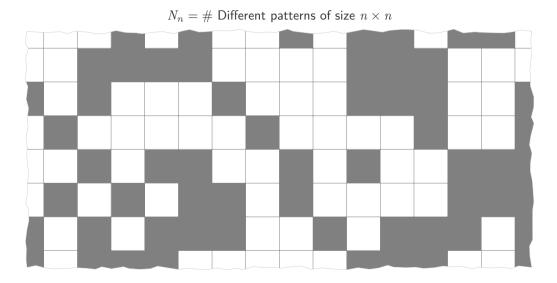
The complexity function $N_n(X)$ is defined as the number of different patterns of size $n \times n$ that appear in X.


Definition 5 Complexity function

The complexity function $N_n(X)$ is defined as the number of different patterns of size $n\times n$ that appear in X.




The complexity function $N_n(X)$ is defined as the number of different patterns of size $n \times n$ that appear in X.


Definition 5 Complexity function

The complexity function $N_n(X)$ is defined as the number of different patterns of size $n \times n$ that appear in X.

$$N_2(X) = 5.$$

 $N_n = \#$ Different patterns of size $n \times n$

-	-	7		0/2		0/1	0/-					0,-			0,
/1	0/1					0/1	0/1	0/1	0/1				0/1	0/1	0
	0/1		0/1	0/1	0/1		0/1	0/1	0/1				0/1	0/1	
1		0/1	0/1	0/1	0/1	0/1		0/1	0/1	0/1	0/1		0/1	0/1	
1	0/1		0/1			0/1	0/1		0/1		0/1	0/1			
/1		0/1		0/1			0/1		0/1	0/1	0/1	0/1			
	0/1		0/1				0/1	0/1		0/1				0/1	
	0/1				n/1	0/1	0/1	0/1	0/1				0/1	0/1	

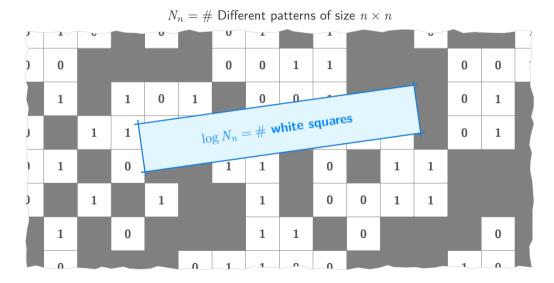
 $N_n=\#$ Different patterns of size n imes n

	1			U		U	1		1						
)	0					0	0	1	1				0	0	
	1		1	0	1		0	0	1				0	1	
		0	0	0	0	0		0	0	1	1		0	1	
)	1		0			1	1		0		1	1			
)		1		1			1		0	0	1	1			
	1		0				1	1		0				0	
	n				0	1_	1		n				1	0	

 $N_n=\#$ Different patterns of size n imes n

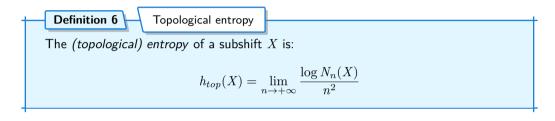
	1			U		U	1		1						
)	0					0	0	1	1				0	0	
	1		1	0	1		0	0	1				0	1	
		0	0	0	0	0		0	0	1	1		0	1	
)	1		0			1	1		0		1	1			
)		1		1			1		0	0	1	1			
	1		0				1	1		0				0	
	n				0	1_	1		n				1	0	

 $N_n = \#$ Different patterns of size $n \times n$


	1			U		U	1		1						
)	0					0	0	1	1				0	0	
	1		1	0	1		0	0	1				0	1	
)		0	1	0	0	0		0	0	1	1		0	1	
)	1		0			1	1		0		1	1			
)		1		1			1		0	0	1	1			
	1		0				1	1		0				0	
	n				0	_1_	1	_	n				1_	0	

 $N_n=\#$ Different patterns of size n imes n

	1			U		U	1		1						
)	0					0	0	1	1				0	0	
	1		1	0	1		0	0	1				0	1	
)		1	0	0	0	0		0	0	1	1		0	1	
)	1		0			1	1		0		1	1			
)		1		1			1		0	0	1	1			
	1		0				1	1		0				0	
	n				0	1_	1	0	n				1	0	


 $N_n=\#$ Different patterns of size n imes n

				U		U	1		1						
)	0					0	0	1	1				0	0	
	1		1	0	1		0	0	1				0	1	
)		1	1	0	0	0		0	0	1	1		0	1	
)	1		0			1	1		0		1	1			
)		1		1			1		0	0	1	1			
	1		0				1	1		0				0	
	n				0	11	1	0	n				1	0	

Topological entropy

For a 2D subshift, $\log N_n(X) \simeq hn^2$:

Topological entropy

For a 2D subshift, $\log N_n(X) \simeq hn^2$:

Definition 6

Topological entropy

The (topological) entropy of a subshift X is:

$$h_{top}(X) = \lim_{n \to +\infty} \frac{\log N_n(X)}{n^2}$$

QUESTION:

What are the possible values for $h_{top}(\boldsymbol{X})$ for all the SFTs?

$$\log N_n \simeq h_{top}(X) n^2$$

[Hochman & Meyerovitch, 2010] proved that topological entropies were **exactly** the right-computable real numbers:

$$\log N_n \simeq h_{top}(X) n^2$$

[Hochman & Meyerovitch, 2010] proved that topological entropies were **exactly** the right-computable real numbers:

 \implies Let X be an SFT:

$$\log N_n \simeq h_{top}(X) n^2$$

[Hochman & Meyerovitch, 2010] proved that topological entropies were **exactly** the right-computable real numbers:

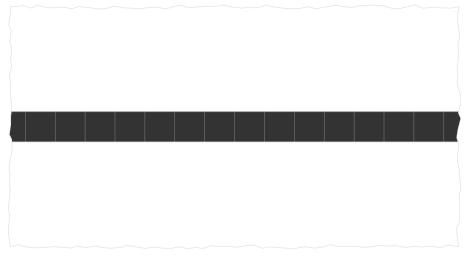
- \implies Let X be an SFT:
 - $ightharpoonup N_n(X)$ is not computable (undecidability of emptyness);
 - lacktriangle Count $N_n'(X)$ number of patterns of size $n \times n$ which contain no forbidden patterns;

$$\log N_n \simeq h_{top}(X) n^2$$

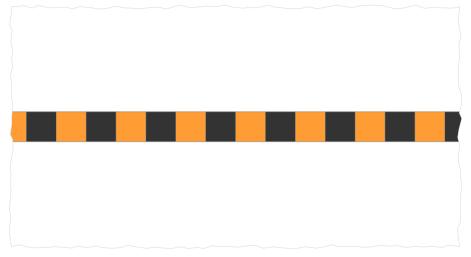
[Hochman & Meyerovitch, 2010] proved that topological entropies were **exactly** the right-computable real numbers:

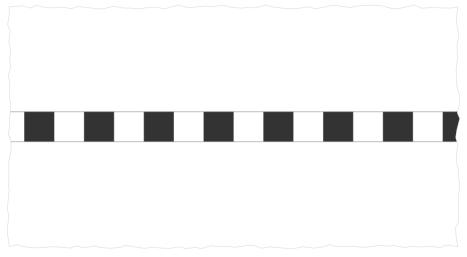
- \implies Let X be an SFT:
 - $ightharpoonup N_n(X)$ is not computable (undecidability of emptyness);
 - ightharpoonup Count $N'_n(X)$ number of patterns of size $n \times n$ which contain no forbidden patterns;

 $\log N_n'(X)$ is computable, and $h_{top}(X) = \inf_n \frac{\log N_n'}{n^2}$ is too.

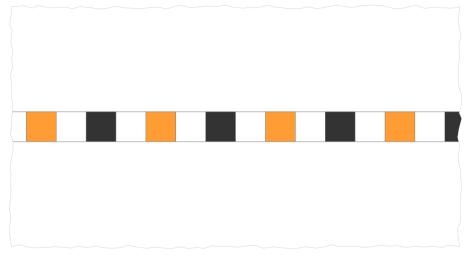

$$\log N_n \simeq h_{top}(X) n^2$$

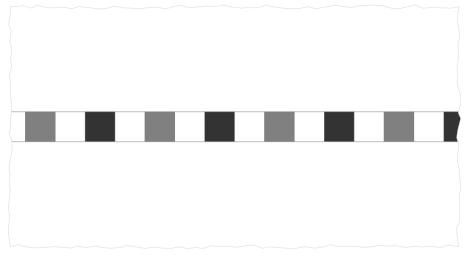
[Hochman & Meyerovitch, 2010] proved that topological entropies were **exactly** the right-computable real numbers:

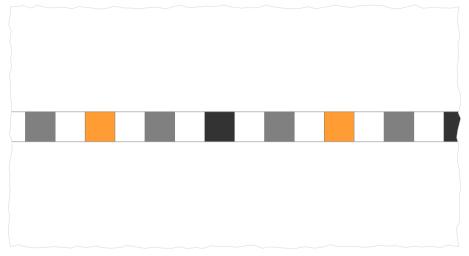

- \implies Let X be an SFT:
 - $ightharpoonup N_n(X)$ is not computable (undecidability of emptyness);
 - ▶ Count $N'_n(X)$ number of patterns of size $n \times n$ which contain no forbidden patterns;


$$\log N_n'(X)$$
 is computable, and $h_{top}(X) = \inf_n \frac{\log N_n'}{n^2}$ is too.

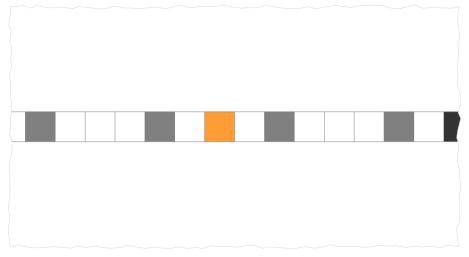
 \longleftarrow For any right-computable h, we create an SFT X such that $h_{top}(X) = h$.

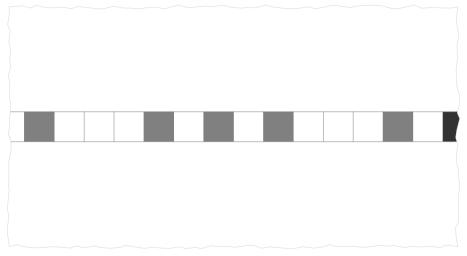


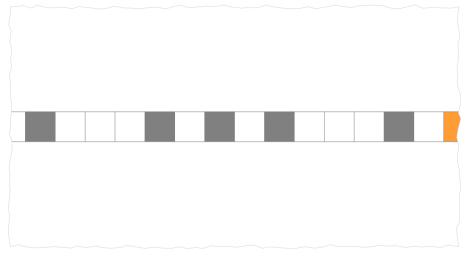

h = .10100...

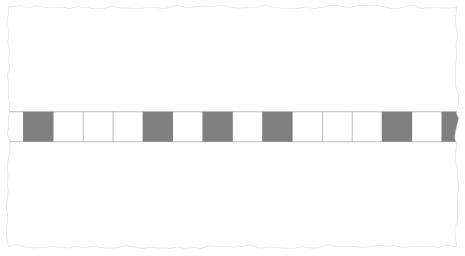


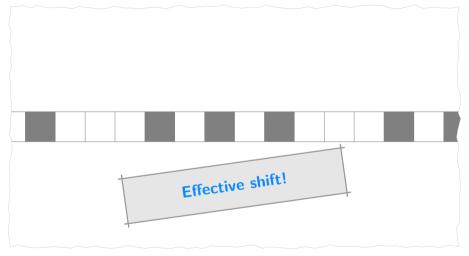
h = .10100...

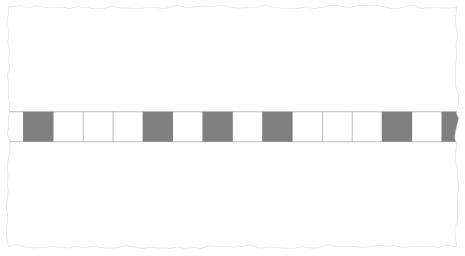

h=.10100...


h = .10100...

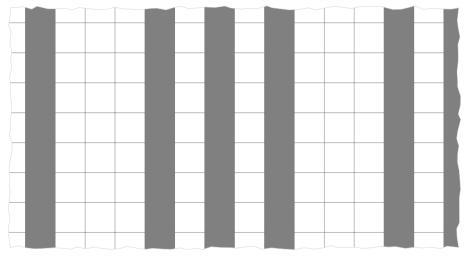

h = .10100...


h = .10100...

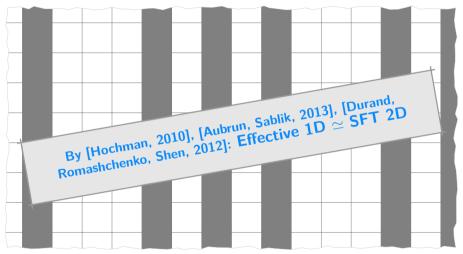

h=.10100...



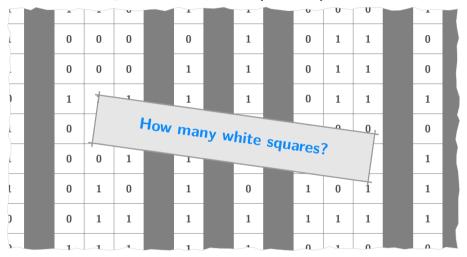
h = .10100...



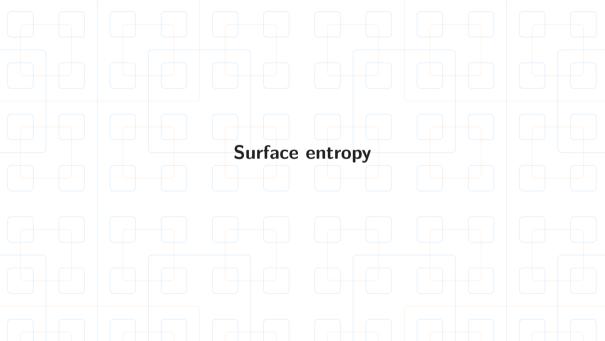
h=.10100...



h=.10100...


h = .10100...

1		7-	0/1	71-	0/- 0/1	0/1	7.
1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
/1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
/1 0/	1 0/1 0	0/1	0/1	0/1	0/1 0/1	0/1	0/1
/1 0/	1 0/1 0	0./1	0/1	0/1	0/1 0/1	0/1	0/1


	_	_	U	1	1	0	U	U	1	
	0	0	0	0	1	0	1	1	0	
	0	0	0	1	1	0	1	1	0	
	1	1	1	1	1	0	1	1	1	
	0	0	0	0	1	0	0	0	0	
	0	0	1	1	1	1	0	1	1	
L	0	1	0	1	0	1	0	1	1	
)	0	1	1	1	1	1	1	1	1	
	1	_1_	1	_1_	1	n	_1_	n	n	

	_	_	U	1	1	0	U	U	1	
	0	0	0	0	1	0	1	1	0	
	0	0	0	1	1	0	1	1	0	
	1	1	1	1	1	0	1	1	1	
	0	0	0	0	1	0	0	0	0	
	0	0	1	1	1	1	0	1	1	
L	0	1	0	1	0	1	0	1	1	
)	0	1	1	1	1	1	1	1	1	
	1	_1_	1	_1_	1	n	_1_	n	n	

	_	_	U	1	1	0	U	U	1	
	0	0	0	0	1	0	1	1	0	
	0	0	0	1	1	0	1	1	0	
	1	1	1	1	1	0	1	1	1	
	0	0	0	0	1	0	0	0	0	
	0	0	1	1	1	1	0	1	1	
L	0	1	0	1	0	1	0	1	1	
)	0	1	1	1	1	1	1	1	1	
	1	_1_	1	_1_	1	n	_1_	n	n	

$$\log N_n \simeq hn^2 \implies h_{\mathsf{top}} = h$$

The arithmetical hierarchy

Definition 7 Arithmetical hierarchy of real numbers ARITHMETICAL HIERARCHY OF REAL NUMBERS 1. $\Delta_1 = \text{computable}$ $\Sigma_1 = \text{left-computable}$ $\Pi_1 = \text{right-computable}$ 2. $\Delta_2 = \text{ limits of r.e. rationals}$ $\Sigma_2 = \text{supremum of right-computable}$ $\Pi_2 = \text{infimum of left-computable}$ 3. ...

What happens after the quadratic term?

We already said, for a 2D SFT:

$$\log N_n \simeq h_{top} n^2$$

QUESTION:

Are there other possible asymptotic growths?

What happens after the quadratic term?

We already said, for a 2D SFT:

$$\log N_n \simeq h_{top} n^2$$

QUESTION:

Are there other possible asymptotic growths?

Yes! By [Meyerovitch, 2011], the class of α such that

$$\log N_n \simeq K n^{\alpha}$$

is exactly the class of Π_3 real numbers.

Surface entropies

The idea: linear term

 $\log N_n \simeq h' n$

Surface entropies

The idea: linear term

$$\log N_n \simeq h' n$$

Definition 8 Surface entropy [Pace, 2018]

The surface entropy $h_s(X)$ of a shift X is defined as:

$$h_s(X) = \limsup_n \frac{\log N_n(X)}{n}$$

Surface entropies

The idea: linear term

$$\log N_n \simeq h' n$$

Surface entropy [Pace, 2018]

The surface entropy $h_s(X)$ of a shift X is defined as:

$$h_s(X) = \limsup_n \frac{\log N_n(X)}{n}$$

QUESTION:

What are the possible values for $h_s(X)$ for all the SFTs?

Surface entropies (Part 1)

 $x \in \Pi_3$ if there exists a recursively enumerable $(r_k)_{k \in \mathbb{N}}$ in Π_1 such that:

$$x = \limsup_{k} r_k$$

Surface entropies (Part 1)

 $x\in\Pi_3$ if there exists a recursively enumerable $(r_k)_{k\in\mathbb{N}}$ in Π_1 such that: $x=\limsup_k r_k$

Surface entropies are **exactly** the Π_3 real numbers:

Surface entropies (Part 1)

 $x\in\Pi_3$ if there exists a recursively enumerable $(r_k)_{k\in\mathbb{N}}$ in Π_1 such that: $x=\limsup_k r_k$

Surface entropies are **exactly** the Π_3 real numbers:

 \implies If X is an SFT, $h_s(X) \in \Pi_3$:

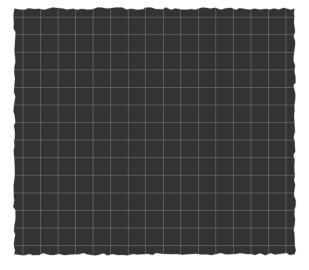
Surface entropies (Part 1)

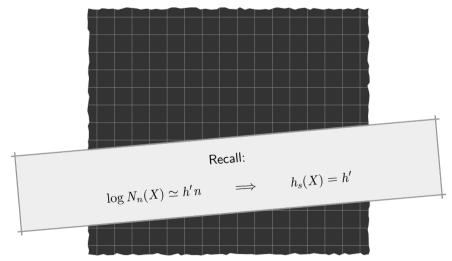
 $x \in \Pi_3$ if there exists a recursively enumerable $(r_k)_{k \in \mathbb{N}}$ in Π_1 such that:

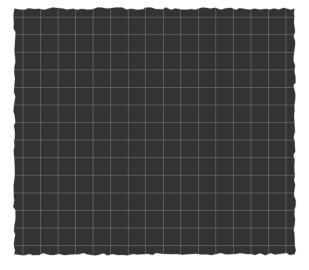
$$x = \limsup_{k} r_k$$

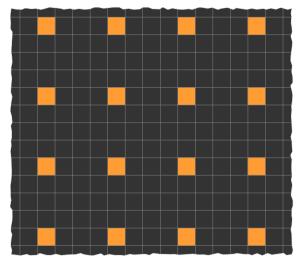
Surface entropies are **exactly** the Π_3 real numbers:

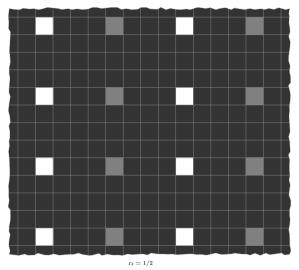
- \implies If X is an SFT, $h_s(X) \in \Pi_3$:
 - $ightharpoonup \log N_n(X) \in \Pi_1;$
 - $ightharpoonup \frac{\log N_n(X)}{2} \in \Pi_1;$
 - $h_s(X) = \limsup \dots = \inf \sup(\Pi_1) \in \Pi_3;$

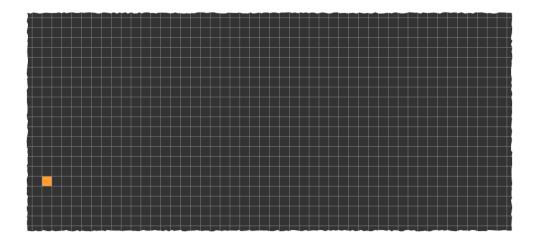

Surface entropies (Part 1)

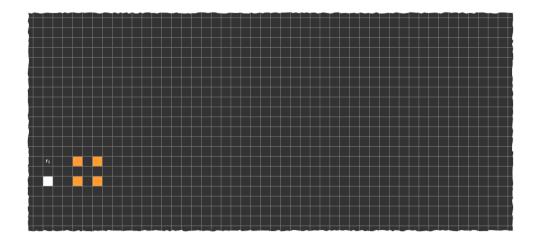

 $x \in \Pi_3$ if there exists a recursively enumerable $(r_k)_{k \in \mathbb{N}}$ in Π_1 such that:

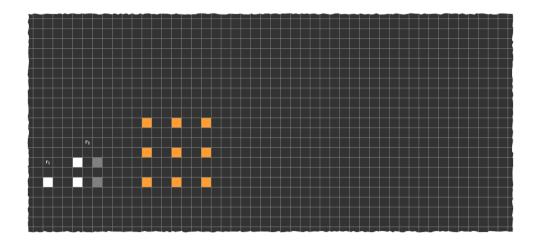

$$x = \limsup_{k} r_k$$

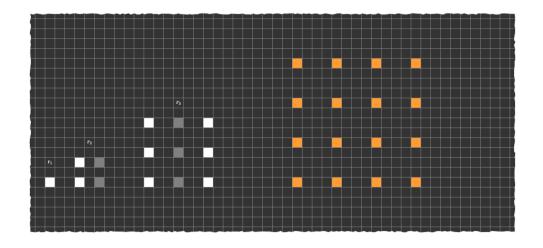

Surface entropies are **exactly** the Π_3 real numbers:

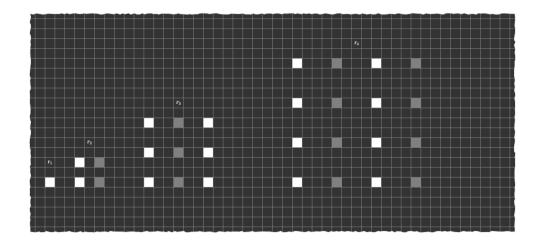

- \implies If X is an SFT, $h_s(X) \in \Pi_3$:
 - $\blacktriangleright \log N_n(X) \in \Pi_1;$
 - $ightharpoonup \frac{\log N_n(X)}{r^2} \in \Pi_1;$
 - $h_s(\ddot{X}) = \limsup \dots = \inf \sup(\Pi_1) \in \Pi_3;$
- \longleftarrow For any $h' \in \Pi_3$, we need to create an SFT X such that $h_s(X) = h'$.

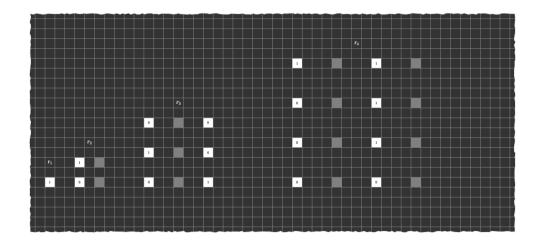


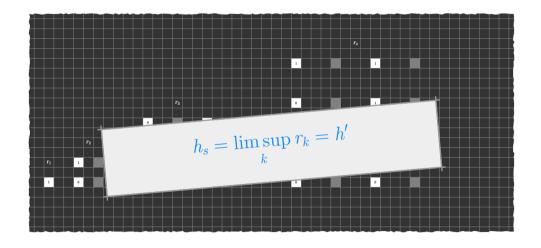


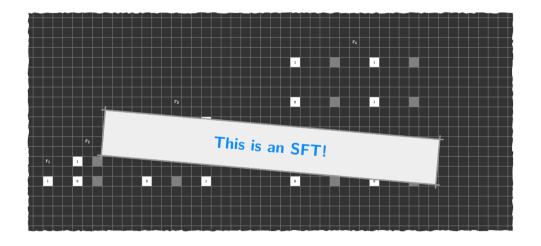


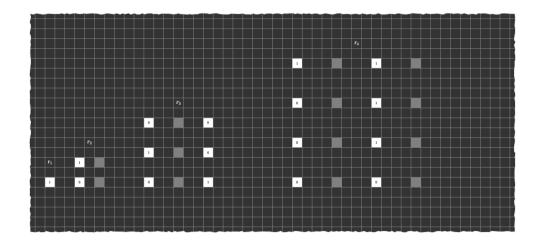












Conclusion

QUESTION:

$$\log N_n \simeq h' n$$

What are the possible values for h^\prime for all SFTs?

Answer:

Surface entropies are exactly the class of Π_3 real numbers!

