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S Definition 1 2D Shifts

A 2D-subshift is a set of colorings Z? — X that do not contain some family of
forbidden patterns F. Each family of forbidden patterns defines a subshift:

Xr = {x e 32 :Vp € F, p does not appear in x}

A e L T 0 O hh T

Z:{E,{E, etc...
F= {lﬂ%},%, etc...}

and
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Subshifts as computation models
» Subshifts are a computation model.
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Classes of subshifts

. Classification of shifts }

1. A subshift of finite type (or SFT) is a subshift that can be defined by a finite
family of forbidden patterns.

2. An effective subshift is a subshift that can be defined by a recursively
enumerable family of forbidden patterns.
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Classes of subshifts

. Classification of shifts I

1. A subshift of finite type (or SFT) is a subshift that can be defined by a finite
family of forbidden patterns.

2. An effective subshift is a subshift that can be defined by a recursively
enumerable family of forbidden patterns.

- [Hochman 2010, DRS 2012, AS 2013]
For any effective 1D subshift X7, there exists a 2D SFT X5 which simulates X;.
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Complexity function

4 Complexity function

The complexity function N, (X) is defined as the number of different patterns of size
n X n that appear in X.
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N,, = # Different patterns of size n x n
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Topological entropy

For a 2D subshift, log N,,(X) ~ hn?:

. Topological entropy

The (topological) entropy of a subshift X is:

(X
heop(X) = lim log Nu(X)

n—+00 'n,2
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Topological entropy

For a 2D subshift, log N,,(X) ~ hn?:

. Topological entropy

The (topological) entropy of a subshift X is:

. log N,,(X)
hiop(X) = " o2
QUESTION:

What are the possible values for hy,,(X) for all the SFTs?
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What about topological entropies? (Part 1)

log N,, ~ htOp(X)n2

[Hochman & Meyerovitch, 2010] proved that topological entropies were exactly the right-computable
real numbers:
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[Hochman & Meyerovitch, 2010] proved that topological entropies were exactly the right-computable
real numbers:
—> Let X be an SFT:

» N,(X) is not computable (undecidability of emptyness);
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What about topological entropies? (Part 1)

log N, = hyop(X)n?

[Hochman & Meyerovitch, 2010] proved that topological entropies were exactly the right-computable
real numbers:
—> Let X be an SFT:

» N,(X) is not computable (undecidability of emptyness);

» Count N, (X) number of patterns of size n x n which contain no forbidden patterns;

log N}, (X) is computable, and Ay, (X) = inf,, o8 N4 is too.

n2

<= For any right-computable %, we create an SFT X such that h,,(X) = h.
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What about topological entropies? (Part 3)

log N, ~ hn®* =  hep=h
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The arithmetical hierarchy

4 Arithmetical hierarchy of real numbers

1.
Ay
X
1T,
2.
b))
I,
3. .

Ay =

ARITHMETICAL HIERARCHY OF REAL NUMBERS

computable
left-computable
right-computable

limits of r.e. rationals
supremum of right-computable
infimum of left-computable
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What happens after the quadratic term?

We already said, for a 2D SFT:
log N,, ~ htopn2

QUESTION:

Are there other possible asymptotic growths?
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What happens after the quadratic term?

We already said, for a 2D SFT:
log N,, ~ htoan

QUESTION:

Are there other possible asymptotic growths?

Yes! By [Meyerovitch, 2011], the class of « such that
log N,, ~ Kn®

is exactly the class of II3 real numbers.

13/18



Surface entropies
The idea: linear term

log N,, ~ h'n
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Surface entropies
The idea: linear term

log N,, ~ h'n

4 Surface entropy [Pace, 2018]

The surface entropy hs(X) of a shift X is defined as:

hs(X) = lim sup log Nn(X)

n

QUESTION:
What are the possible values for hs(X) for all the SFTs?
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Surface entropies (Part 1)

x € I3 if there exists a recursively enumerable (7;)ken in II; such that:

x = limsup ry
k
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Surface entropies (Part 1)

x € I3 if there exists a recursively enumerable (7;)ken in II; such that:

x = limsup ry
k

Surface entropies are exactly the II3 real numbers:

= If X is an SFT, hy(X) € Il3:
> log N, (X) € Ily;
b oENM(X) ¢y
> hg(%) = limsup ... = inf sup(Ily) € II3;

<= For any h' € I3, we need to create an SFT X such that hy(X) = h'.
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Surface entropies: the sparse squares (Part 2)
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Surface entropies: the sparse squares (Part 2)

Recall:
X)="H
log Na(X) = h'1 e
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Conclusion

QUESTION:
log N, ~ h'n

What are the possible values for A’ for all SFTs?

ANSWER:

Surface entropies are exactly the class of II; real numbers!
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Thank you

Questions?



	Subshifts
	Topological entropy
	Surface entropy
	Conclusion

